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ABSTRACT 

SYMAP2, a FORTRAN computer program for symbolic manipulation of 

algebraic forms, is operational on the BRIESC 2 computer.  FORTRAN- 

like formulas can be built up, combined, displayed, differentiated, 

modified through substitution or change of variables, and operated on 

in various other ways, either to verify or eliminate the need for many 

tedious and lengthy hand transformations.  No knowledge of FORTRAN 

programming as such is required for use of SYMAP2. This report 

includes numerous examples with detailed explanation of each. 
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I. BACKGROUND 

Traditionally the electronic computing machine has been used as a 

large, fast, accurate device for numerical calculations where either 

many steps, many decimal places of accuracy, or complicated logic as to 

what steps to take next are involved.  In recent years there have been 

a number of attempts to extend the speed, the capacity, and the logic 

of the computer to a variety of non-numeric or partially non-numeric 

applications . The computer-based algebraic symbol manipulator is one 

such extension. 

A mathematician, or other scientist or engineer, using pencil and 

paper often has to carry out tedious algebraic and related symbol 

manipulations in transforming mathematical expressions to more useful 

forms. Obvious examples include expanding powers of sums, grouping 

terms having some common factor, performing differentiation with 

respect to one or more variables, changing coordinate systems, and the 

like.  In the process it is easy to make careless errors such as losing 

a sign, overlooking one term, or depending on faulty recollection of 

some mathematical rule. Electronic computers can be programmed to 

carry out many symbolic transformations quickly and accurately and thus 

save the mathematician both time and effort as well as reduce the 

likelihood of a careless error.  SYMAP2 was designed to do just that 

and is now operational at BRL. 

Earlier attempts to achieve some of these goals have been made 
2 

both at BRL and elsewhere.  P. Smith successfully attacked the 

differentiation problem at BRL using a Polish suffix notation 

internally. Very little use of his programs has been made locally. 

While these programs still exist within ARDCf*they are programmed in 

the FORAST language rather than the more standard FORTRAN IV. SYMAP1 

is a more recent algebraic symbol manipulator designed at BRL by the 

author , and it is available in FORTRAN IV.  It is largely restricted 

to manipulations of polynomials, although decimal exponents are 

permitted and some trigonometric functions are allowed as coefficients. 

Differentiation of polynomials in several variables is included, and 
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a variety of substitutions can be performed. 3YMAP2, the subject of 

this report, includes all these capabilities and many more. 

Other algebraic symbol manipulators have been devised elsewhere. 

Brief discussions of some of these are to be found in surveys by 

Bobrow and Sammet , which contain extensive bibliographies.  Perhaps 

the best known of these are FORMAC and ALTRAN . None of these outside 

manipulators is available on computers at BRL since most of them were 

designed for other specific computers.  Brief comparisons with 3YMAP2 

will appear occasionally later in this report. 

II.  THE MASAITIS L-SYSTEM AND SYMAP 2 

C. Masaitis of the Applied Mathematics Division of BRL has developed 

an original approach to the algebraic symbol manipulation problem.  It 

is called the L-System and is described in detail in an as yet 
Q 

unpublished manuscript .  A few comments are in order here, as SYMAP 2 

is an implementation by the author and Miss V. Woodward of AMD of much 

of the L-System with minor changes for operational expediency.  The 

implementation in turn influenced certain alternative design character- 

istics, and the L-System was modified to reflect some of these. 

A special internal notation (L-notation) was developed by Masaitis 

for mathematical forms in the L-System. This notation, while better 

read by machines than by humans, removes the inherent ambiguity of 

some standard mathematical conventions and makes precise many important 

relationships between component parts of the mathematical forms no 

matter how complicated the forms.  Given this notation and Masaitis' 

related precise rules of manipulation, the computer program SYMAP2 

could be implemented and has been within the constraints of the 

computers currently available at BRL.  Flow charts and related details 

of the implementation are presented in another as yet unpublished 
9 

report . 

In general any mathematical form is permitted which can be built 

up from constants and primitives by repeated application of the 

operations of addition, subtraction, multiplication, division, 
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exponentiation, and certain standard or general functions of one or 

more variables. The set of simple functions of one variable implemented 

at present includes log , loS-,0, sin, cos, tan, cot, sec, esc, arc sin, 

arc cos, arc tan, arc cot, sinh, cosh, and tanh.  Others could be added 

if needed. The user can also specify such general functions as f(x), 

g(u,v), etc. Repeated applications of these operations can build up 

composite expressions of considerable complexity which in turn can be 

operated on further. 

Additional operations include summations over one or more sets of 

integer indexes, products over index sets, indefinite integration , 

definite integration , differentiation, substitution of one algebraic 

form for another in a third, solving (small) systems of linear algebraic 

equations, change of variables, and several kinds of factoring. With 

each of these manipulations certain kinds of expansion and simplification 

are automatic, and others are under user control. Results can be 

displayed in readable form following any such operation. 

Most computer problems at BRL are written in the FORTRAN language, 

and SYMAP2 consists of more than 120 FORTRAN subprograms interlinked 

appropriately to achieve the aims of the variety of manipulations 

mentioned above.  Several versions of SYMAP2 exist, all functioning on 

the ERLESC 2 computer.  One version in "standard" FORTRAN could be 

implemented elsewhere with at most minor changes.  Other versions 

provide some additional flexibility by using certain special features 

of local computers and local FORTRAN conventions and subroutines. 

Where pertinent in this report these versions will be distinguished. 

The zvctfucrfion o<J inte.gicLlt> hai bzen ijnplejmnte.d, but ix> linUttd to 
contain vcAt/ commonly occwuiing cla&^u oi lnte.gM.nd6, a& diAcu&Aed 
lateA. 
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III.    INPUT TO THE SYMAP2 MANIPULATOR 

As with most FORTRAN programs some "data" must be supplied to the 

SYMAP 2 manipulator.  This input consists of several distinct parts 

introduced sequentially: 

(1) Standard input common to all users. 

(2) Mode specification and list of user primitives. 

(3) List of user special functions (at least one). 

(h)    List of user manipulations and special controls. 

The present implementation of SYMAP2 at BRL is as a "batch" 

problem, not remote and not interactive; so the input is prepared in 

advance and submitted on punched cards. 

A. Part (l) Input 

The part (l) input is provided to the user and merely submitted 

first.  It supplies certain standard symbols and symbol strings used 

internally and is read in rather than prestored to provide flexibility 

in case of implementation on dissimilar computers.  In particular, the 

special primitive names PI (=TT), EBASE (=e), and INFIN (=°°) are supplied 

here, not in part (2). This part terminates with a "sentinel card" 

consisting of commas in card columns 1 and 2 only. 

B. Part (2) Input 

Input for part (2) is of two types, one card for certain user 

options and additional cards for specifying user primitives. The 

options include:  (a) exact (rational) or approximate (decimal) 

arithmetic, (b) stopping if an indeterminate form is encountered 

(O/O, O.00, °°/m, 0°, co°  or 1™) >   or replacing it by a new primitive and 

continuing, and (c) specifying a control on certain automatic 

expansions. 

If all numerical coefficients are integers, specifying either 

EXACT or APPROX at column 1 will suffice.  Otherwise if rational 

numbers are wanted, EXACT should be used.  If decimal values are 

wanted, APPROX is needed.  There are limitations of about 7 digits on 

numerator, denominator, and decimal approximation in the BRLESC 2 
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implementation. Rounding errors can occur but have not been serious to 

date. 

Rational numbers are expressed in the form (x,y) where x and y are 

integers. Thus 1/3 is denoted (1,3) and - 25/231 is ( -25, 231). 

Results in the EXACT mode are reduced to lowest terms automatically, so 

that (5,8) + (7,8) = (3,2).  If the APPROX mode is specified, then any 

rationals such as (1,3) introduced by the user are automatically 

converted to decimal values like .3333333 with some error in the last 

digit.  Similarly a decimal number like .3333333 in the EXACT mode 

becomes (3333333, IOOOOOOO) and not (1,3)>   so the user should exercise 

caution in this regard. 

For control of indeterminate forms use BYPASS at column 11 if 

indeterminates are to be allowed in the form of new primitives. Leave 

columns 11-20 blank if the detection of any indeterminate is to be 

announced but operation is to cease then. 

For control of automatic expansion, specify a small non-negative 

integer M in columns 21-22. Then expressions such as (A + B) will be 

expanded only if J is an integer such that 0 <.  J <,  M and left unexpanded 

otherwise. Expansion in full is automatic if M=0 (or blank). The user 

may revise his choice of options if necessary later, in part (k). A 

.summary is shown in Figure 1. 

The remainder of part (2) of the input is a list, one per card at 

column 1, of the primitives the user includes in his algebraic forms. 

Not more than kO  are allowed at present. Their sequence in the list 

determines a sorting (collating) sequence used in simplifying results; 

so if a result is to have its terms grouped in like powers of X, for 

example, then X should be specified before any other primitives which 

are expected to appear. 

Primitives may have names of 1 to 6 letters or digits, the first 

a letter, and if the first is F or I the second must not be a digit. 

Thus X, Y, XI, LAMBM, FF, G, J3, FA2 (but not F2A or II) are allowed. 

Input to part (2) ends with a sentinel card as above. 
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Card Columns 1-10 Arithmetic mode 

EXACTbbbbb Rational arithmetic of numbers 

APPROXbbbb Decimal approximations 

Card Columns 11-20 Indeterminates 

bbbbbbbbbb Halt on noting indeterminate 

BiPASSbbbb Replace indeterminate by new 
primitive 

Card Columns 21-50 Expansion control 

bbbbbbbbbb Expand wherever possible 

integer M Expand only if exponent ^ M 

Note:  The symbol b indicates a blank character. 

Figure 1.  Summary of Options, Part (2) Input 

C. Part (3) Input 

The part (5) input is a similar list of user special functions (at 

least one and not more than 30) followed by a sentinel card. Function 

names are restricted in the same manner as primitive names and must not 

duplicate any primitive name, of course. The number of arguments of a 

function is not specified here, only the name.  (As above, position on 

this input list affects the sorting sequence of functions, but in 

general all functions follow the last primitive; so this is rarely 

important to the user.) 

D. Part (k)  Input 

Input for part (k)  is the sequence of user-specified manipulations 

and controls (explained in the next section) followed by a sentinel 

card as above.  In general there is no further input after part {k), 

and the manipulations are curried out in sequence when this final 

sentinel is recognized.  Provision to restart at part (2), or at part 

(h),  can be arranged if needed. 
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IV.  SPECIFYING MANIPULATIONS 

Manipulations allowed with SYMAP2 are of three kinds: basic, 

composite, and control. Basic manipulations are allowed in all 

implementations.  Composite and control types require special features 

available at BRL but not necessarily elsewhere (such as the PACK, 

UNPACK, ENCODE, and DECODE operations  on character strings which are 

not standard FORTRAN). 

A.  Basic Manipulations 

Basic manipulations are specified in a manner similar to some 

"three-address-code assembly languages". In general the result of any 

manipulation remains available for later use; so it is given a name. 

Names of most results at present are denoted by the letter F followed 

by an arbitrary positive integer assigned by the user.  (Exceptions 

will be explained later). Thus in F21 = X + Y the result is called 

F21. The two operands are the (previously declared) primitives X and Y, 

and the operation is (symbolic) addition. Thus F21 here represents the 

sum x + y, and later operations on F21 would be operations on x + y. 

Operands can be primitives, positive numbers, or the results of 

previous operations. The second operand may be an explicitly negative 

number, but not the first.  (However, unary operations with - permit 

the introduction of negatives in general.) The following examples 

introduce several basic manipulation types. The brief comments often 

shown at the right in examples are of course not punched on actual 

input cards. 

Fl = 1.3 + X addition 

F2 = 6 - Y subtraction 

F3 = 3 * x multiplication 

PU = Y / k division 

F5 = X ** -2 exponentiation 

F6 = SIN (Fl) function of one argument 

FT = - F3 change of sign (unary) 

F8 = F7 * Fl operation on 2 previous results 
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F9 = GFCN (F2, FT, -8) function of 3 arguments 
(see part (3) input) 

F10 = Fi+ ** F5 higher level exponentiation 

Fll = F2 copy (unary) 

F12 = -3.II+16 form a negative number 

With SYMAP2, unlike conventional FORTRAN, the decimal point is not 

needed ("but is permitted) with integers such as those shown in F2, F3, 

Fh,  and F9 above. 

In most of the above examples no simplification is required, but 

it would be automatic in the case of F8 where F7 * Fl would mean 

(-3x) * (1.3 + x) and would become the^equivalent of -3.9x -p3x .  „ 

Similarly in F10 the quantity (.25y)   would become (.25)   * y 

automatically in accordance with the rules of the L-System as adopted 

and implemented. 

Additional basic manipulations include the following as examples, 

discussed briefly below: 

F21 = SUM (1, h,  X, F3) 

F22 = PROD (2, k,  Y, F2) 

F23 = DERIV (X, F6) 

F21+ = IINTEG (X, F6) 

F25 = DINTEG (F2, F3, T, F5) 

F26 = SUBST (F6,  X, FU) 

F2T = COEFF (X, F8) 

F28 = VALUE (F21) 

F29 = VALUE (F22) 

F30 = VALUE (F23) 

F31 = RECONV (F9) 

Here F21 is the algebraic form equivalent to the indicated sum 

over an integer index set, namely E (3*x). The sum is not 
x=l _ 

automatically expanded as this is often undesirable. However, F2Ö is 

the value of this summation, i.e., the expanded form with any 

"standard" simplifications carried out. Thus, F28 is 3*1 + 3*2 + 3*3 

+ J>*h  which simplifies to 30. Similarly, F22 is the indicated product 
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k 
II (6-y), not expanded. However, F29 is the expanded and simplified 

result, not necessarily a number in general, but in this case found to 

be (6-2) * (6-3) * (6-M = k * 3 * 2 = 2k. Double and triple sums and 

products are also allowed. 

F23 is the indicated derivative with respect to x of the form F6. 

Its value is F30, namely the value of — [ sin (1.3 + x) ] or 

cos (1.3 + x).  In some versions of SYMAP2 the DERIV operator includes 

the VALUE operation as a convenience to the user. 

Much more complicated derivatives can be found, some of which are 

discussed later in this report. 

F2U and F25 are indicated indefinite and definite integrals 

respectively. Certain kinds of symbolic integrals can be evaluated; 

others are merely indicated at present. There are no plans currently 

to attack the general symbolic integration problem, however.  Here F2U 

is the equivalent of f sin (1.3 + x) dx and F25 represents J x  dt. 
6-y 

Indicated double and triple integrals are also provided for. Examples 

are included later in this report. 

F26 is the result of an actual substitution in which the primitive 

X is replaced by Fk,  that is .25y, wherever X occurs in F6.  WOW F6 

represents sin (1.3 + x); so F26 represents sin (1.3 + -25y). Examples 

of more complicated substitutions are given later in this report. 

F27 is the coefficient of the first power of x in the form F8, 

namely -3-9- The coefficient in some other case might have been non- 

numeric, such as a function of y, etc. Finding such coefficients is 

one type of factoring. 

F31 is a display (readable print-out) of the form F9, generated 

earlier. Displays cannot be manipulated further and indeed are not 

saved; so any operation on F31 would fail. F9 remains available, 

however, and can be manipulated further. 

Other basic manipulations can be used to set up and solve small 

systems of linear algebraic equations with non-constant coefficients. 

(Constant coefficients are permitted, but more efficient methods are 
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available for such cases, using standard FORTRAN subroutines.) 

Manipulations of type FSYST, SOLVEQ, and ELEM are needed in conjunction 

with types introduced earlier. As an example: 

Fh$  = FSYST (PUI, F32, F39) 

Assuming that FUl, F32, and F39 are 3 linear expressions in 3 unknowns, 

this step forms an ordered system of 3 equations (each assumed equal 

to 0). 

FU6 = FSYST (X, Y, Z) 

This step forms a similar system of the 3 unknowns in the order 

specified. 

FU7 = SOLVEQ (FU5, FU6, 3) 

This solves the 3 equations specified at F^5 for the 3 unknowns 

specified at FU6 and forms an ordered array of the solutions at FVf. 

FkQ  = ELEM (FVf, 1) 

Fk9  = ELEM (FVf, 2) 

F50 = ELEM (FU7, 3) 

These steps isolate the first, second, and third elements of the array 

FU7 for any further operations, such as display. 

F51 = RECONV (FU9) 

This displays in readable form the item specified, in this case 

the second element of the solution, that is, the value of the variable 

Y in terms of the parameters other than X and Z which occur in the 

original system FU5- 

Incidentally, the "unknowns" in such systems need not be primitives 

so long as the equations are linear in them. For instance FUl might be 
2        2 1/2     v v 

x + 2y + z + a . sin (w ' ) + cp - h  and the unknowns could be p , 
1/2      2 

sin (w  ), and x . The solutions would involve y, z, a, c, and any 

parameters introduced via the other equations. 

Similar commands could be used (in principle) for systems of 1,2, 

3,U or more elements. A limit of at most 3 elements is imposed at 

present on BRLESC 2. 

Additional information on several of these and a few additional 

SYMAP2 commands is found in the examples given later in this report. 
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A brief summary is shown in Figure 2(a) and (b) below: 

Arithmetic 

El + E2 El * E2 

El - E2 El / E2 

-El El ** E2 

Simple Functions 

LOGE (El) ARCSIN (E2) 

L0G10 (El) ARCCOS (E2) 

SIN (E2) ARCTAN (E2) 

COS (E2) ARCCOT (E2) 

TAN (E2) SINH (E2) 

COT (E2) COSH (E2) 

SEC (E2) TANH (E2) 

CSC (E2) 

Here Ei is a primitive, a positive constant, or the label F. of a 
u 

previous result.  E2 but not El can be an explicitly negative constant 

also. El cannot be a constant, i,   j,   and k are positive integers, and 

p is a primitive.  See also Figure 2(b). 

Figure 2(a).  Summary of Principal Basic Manipulation Types 

B.  Composite Manipulations 

Composite manipulations allow for the equivalent of several basic 

manipulations in one user specification. Thus algebraic formulas much 

like the "arithmetic expressions" of FORTRAN are permitted: 

F55 = (Y**2 - X**(Y-l)) * (SIN (F3 + Y * LOGE (X**(Y-l))))**2 

Use of such a formula may make specification simpler for users familiar 

with FORTRAN expressions.  The SYMAP2 program analyzes such expressions, 

breaks them up into equivalent basic manipulations and in due course 

carries out those basic manipulations. Advantages are that fewer cards 

are needed, and meaningful formulas are kept intact by the user. 

Disadvantages are that the manipulator program is enlarged and is 

slowed down by the time needed to analyze complicated expressions, and 

further that some basic manipulations may be done more often than 
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Special Functions 

RECONV  (F.) 
J 

VALUE   (F.) 
J 

GOEFF   (El,   F.) 
3 

FSYST   (El,  El',   . ..,  El") 

SOLVEQ   (F.,  F  ',   i) 

ELEM  (F.,   i) 

SUBST   (F.,  El,  E2) 

DERIV  (p,   F.) 

inMEG   (p,   F.) 
J 

IINTEG   (p,   p',  F.) 
J 

IINTEG   (p,   p',   p", F.) 

DINTEG   (E2,   E2',   p, F.) 

DINTEG   (E2,   E2',   p, E2", E2'",   p',   Fj) 

DIOTTEG   (E2,  E2',   p, E2",  E2'",   p',  E2"", E2",//,   p",   F.) 

SUM  (i,  k,  p,  F  ) 
J 

SUM  (i,   k,   p,   i',   k',   p',  F  ) 
J 

SUM  (i,   k,  p,   i',  k',  p',   i",  k",  p",  F  ) 

PROD  (i,  k,   p,  F.) 
J 

FROD  (i,  k,  p,   i',  k',   p',  F  ) 
J 

FROD  (i,   k,  p,   i   ,  k  ,  p  ,   i     ,  k     ,  p     ,  Fj) 

SEQ   (E2,  E2',   ...,  E2") 

IMDIFF  (p,  F.,  p',  F. ') 

IMDIFF  (p,  F.,  p',  F.',  p",  F.") 

IMDIFF  (p,  Fj,  p  ,  F    ,  p     ,  F       ,  p       ,  F ) 

PIMDIF   (i,   i',   F.,   F.',  F.",   F.'") 
J       J J J 

GHGVAR  (i,   i',   i",   F.,   F.',  F.",  F.'",  F."") 

Figure 2(b).     Summary of Principal Basic Manipulation Types 
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necessary.  In F55 for example X**(Y-l) appears twice and would be 

generated twice.  However, the user could generate it once, as F^k  say, 

and refer to F^>k  twice in specifying F55. 

Certain special basic manipulations such as ELEM, VALUE, RECONV, 

COEFF, etc. are not permitted in composite manipulations per se but can 

be done separately and the results referred to by label.  A length 

limitation to card columns 1 - JO  is also imposed on both basic and 

composite manipulations at present. 

C.  Control Manipulations 

Control specifications allow certain kinds of counting, decisions 

based on counts, and jumps.  Some use of indexed arrays is also 

permitted.  Jumps are to numbered manipulations only. At present up to 

100 different cards may have unique one or two digit numbers in columns 

79 - 80. The unconditional jump, say to the manipulation numbered U0, 

is as follows: 

GO TO kO 

where the GO starts at card column 1.  This causes the manipulation 

numbered U0 to be done next, then the one after 1+0, etc. until some 

other control specification changes the sequence again. 

Other jumps depend on the integer contents of certain pseudo- 

index registers called II, 12, ..., 120. At present there are 

precisely 20 of these.  Their existence rules out primitives and 

functions having names starting with the letter I followed by a digit, 

as stated earlier.  Each index register I can contain one integer, 
n ' 

positive, negative, or zero.  Loading an index register, say 13, with 

an integer, say 2, is done with the following control specification, 

starting at card column 1: 

INDEX 13-2 

The integers in index registers may be changed by adding, subtracting, 

multiplying, or dividing by constants or by the contents of other 

index registers.  (The integer result of division is "rounded down" 
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the same as in FORTRAN). Thus 

INDEX 12 = 12 + 1 

INDEX 12 = 13 - 5 

INDEX IU = 3 * II 

INDEX I^ = II * 5 

INDEX 15 = 13 / k 

INDEX 13 = II - 12 

and similar integer operations using two operands are allowed. 

The only conditional jump allowed at present is similar to the 

"Jump if +" operation in some computer codes.  In SYMAP2 it takes the 

form 

IF (I , m) 
n 

where I is any index register and m represents any numbered manipulation. 

Thus 

IF (13, 25) 

tests the integer contents of 13 and if zero or greater causes a jump 

to the manipulation numbered 25. 

Use of the above GO TO, INDEX, and IF types of control specifications 

permits many of the logical and looping capabilities of numeric 

processors. These are operational on the BRLESC 2 computer.  Other 

types may be added to the SYMAP2 manipulator in the future. 

It should be noted that the manipulations 

INDEX 15 = 1 

and 

F3 = 1 

are not equivalent. The first puts the integer 1 into a single cell 

called 15 which can be used as just described.  The second puts 

several characters, equivalent to unity in the L-notation, into a 

string called F3-  Conversion between the two notations is permitted, 

however, by additional index operations. Thus: 

INDEX FT = IU 

causes the integer at Ik  to be transformed into L-notation and stored 
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in string F7 (with Ik  not changed), and 

INDEX 13 = F2 

causes the L-integer in string F2 to be converted to a true integer and 

stored in index 13 (with F2 unchanged).  The latter requires that F2 

actually be an integer in L-notation, not some other algebraic form, or 

an error occurs. 

When SYMAP2 control specifications are available (as on BRLESC 2), 

certain indexed arrays of results are also permitted. Names of up to 9 

characters such as Fl(2), F2(3,5), F3(I2), F4(ll,5), F6(l2,I3), F7(2,3,M 

are allowed both as results and as arguments for later manipulations. 

Only indexes II through 19 are permitted in arrays at present. Note 

that a name like F35(11,13) exceeds the 9 character limitation, as does 

Fl(ll,I2,I3)• Actually, names with references to index registers I 

are adjusted internally, with the name I being replaced by the contents 

of I .  Thus, if II contains 100, then the name F^0(ll,2), which has 

9 characters, is changed to F^O(100,2), which has 10 characters and is 

illegal.  The contents of II must be kept small to avoid this.  In 

practice, however, SYMAP2 arrays must be kept small for other reasons; 

so this naming restriction is not serious. 

Result names F. and of course I can be reused if desired.  In 
l n 

such cases previous results with exactly the same name are no longer 

available. 

V.  EXPOSITORY EXAMPIES 

The principal manipulations of basic, composite, and control types 

have now been introduced. Examples follow to show additional features 

of some of these and to indicate how they can be applied in practice. 

Some comments on generality are included with each and also in Section 

VI. 
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A.   Indexed Arrays and Controls 

Given two 3x2 matrices A and B, find C = A + B. 

Assume that the elements of A have been found and are the symbol 

strings with names Fl(l,l), Fl(l,2), Fl(2,l), Fl(2,2), Fl(3,l), ^d 

Fl(3,2) and that those of B are in a similar array F2(i,j). Let us 

find the elements of C and store them in an array F3(i,j). 

For this specific case 6 steps are sufficient: 

F3(l,l) = Fl(l,l) + F2(l,l) 

F3(l,2) = Fl(l,2) + F2(l,2) 

F3(2,l) = Fl(2,l) + F2(2,l) 

F3(2,2) = Fl(2,2) + F2(2,2) 

F3(3,l) = Fl(3,l) + F2(3,l) 

F3(5,2) = Fl(3,2) + F2(3,2) 

Six more steps of type RECONV are needed if the results are to be 

displayed.  (See Figures 3 and k). 

If, however, the number of rows or columns were much larger, say 

6x8, or perhaps changing for different applications, use of indexes 

and loops might avoid duplicate human effort. 

INDEX 15 = 6 

INDEX 16 = 8 

INDEX II = 1 

INDEX 12 = 1 10 

F3(I1,I2) = Fl(ll,I2) + F2(ll,I2)  20 

F100 = RECONV (F3(ll,I2)) 

INDEX 12 =12 +1 

INDEX 13 = 16 - 12 

IF (13,20) 

no. of rows 

no. of columns 

first row 

first column 

one element 

display 

last column? 

INDEX II = II + 1 

INDEX IU = 15 - II 

IF (IU,10) 

INDEX II = 1 

last row? 

dummy operation 

(or next step, if any) 
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APPROX 

X 

Y 

> > 

G 

options 

primitive(G) 

function(s) 

Fl (l ,1) 

F2 (l ,1) 

Fl (1 ,2) 

F2 (1 ,2) 

Fl (2 ,1) 

F2 'o ,1) 

Fl '2 ,2) 

F2 '2, 

Fl( '3, 1) 

F2( 3, 1) 

Fl( 3; 2) 

F2( '5, 2) 

F3( 1, l) 

F3( 1; 2) 

FJ( 2, l) 

F3( 2, 2) 

F3 !5. 1) 

F3( '3. 2) 

= Y*SIN(X) + Y ** - 3 

= SIN(X) * 3*Y-Y ** 2.5 

= X * SIN(X) ** 2 

= X * COS(X) ** 2 

= (5,6) * G (Y) 

- (1,5) * G (Y) 

= .U * Y ** 3 

= (Y * -.2) ** 3 

= (X + Y) ** 3 

= (X - Y) ** 3 

= X - Y 

= Y - X 

F100 = 

F200 = 

F300 = 

FUOO = 

F500 = 

FoOO = 

= Fl(l 

- Fl(l 

= Fl(2 

= Fl(2 

= Fl(3 

= Fl(3 

RECONV 

RECONV 

RECONV 

RECONV 

RECONV 

RECONV 

1) + F2 

2) + F2 

1) + F2 

2) + F2 

1) + F2 

2) + F2 

F3(l,l) 

F5(l,2) 

F3(2,l) 

F3(2,2) 

F3(5,l) 

F3(3,2) 

1,1) 

1,2) 

2,D 
2,2) 

3,D 
3,2) 

all 

bll 

al2 

bl2 

a32 

b32 

ell 

cl2 

c21 

c22 

c31 

c52 

display(s) 

Figure 5-  Input, Parts (2), (3), (h), for Array Example 
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FlOO 

1+*Y*(SIN(X))+( -l)*Y**2.5+Y** ( -5) 

F200 

X*(SIN(X))**2+X*(C0S(X))**2 

F300 

1.166667*(G(Y)) 

F^OO 

.392*Y**3 

F500 

6*X*Y**2+2*X**3 

F600 

0 

Figure l+.  Principal Output, Array Example 

Note that in the second example an inner loop starting at step 20 

is traversed for each element of any given row and an outer loop start- 

ing at step 10 allows consideration of each row in turn. The results of 

step 20 are stored with names F3(l,l), F3(l,2), . .., F3(l,8), F3(2,l), 

..., F3(6,8). Thus there is no conflict in the reuse of the "label" 

F3(ll,I2), and all A's, B's and C's remain available for further use. 

B.   Product over an Index Set 

5        .2 Let us use SYMA.P2 to generate      II    (i    + j) and then evaluate it. 
i=l 

2 
The operand i  + j can be built up in two basic steps. 

Fl = I**2 i2 

F2 = Fl + J i2 + j 

where I, J are previously specified primitives. 

Now indicate the product for i running from 1 through 3- 

F3 = PROD (1, 3, I, F2) 

This single product requires one triplet 1, 3, I indicating the lower 

limitj the upper limit, and the running index, followed by a final 
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Input: 

EXACT 

I 

J 

.'.' 

G 

)) 

Fl = j-x-x-2 

F2 = Fl + J 

F3 = PROD (: I,  3, I, F2) 

FU = VALUE (F3) 

F5 = RECONV (FU) 

Principal Output: 

F5 

U9*J+l4*j**2+j**3+36 

Figure 5- Product over a Single Index Set 

parameter specifying the operand of the product. The indicated product 

is called F3. 

F4 = VALUE (F3) 

In this context VALUE substitutes successively i = 1, i = 2,  and i = 3 
.2 

in i + j  and multiplies the results to get the equivalent of 

(l2 + j) * (22 + j) * (32 + j) or (1 + j) * (h  + j) * (9 + j) which 
2   3 

automatically expands to 36 + U9j + Ihj    + j    at FU. 

F5 = RECONV (F4) 

This displays the final results in readable form.  (See Figure 5«) 

Double and triple products can be handled similarly, within limits 

imposed by computer memory allocations. 
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The general single product, double product, and triple product, 

such ac ul u2 ul u3 u2 ul 
n f or n n f or n n n f 

xl=il x2=i2 xl=£l xj=i3 x2=i2 xl=il 

are specified respectively by 

PROD (LI, Ul, XI, F) 

PROD (L2, U2, X2, LI, Ul, XI, F) 

PROD (L3, U3, X3, L2, U2, X2, LI, Ul, XI, F) 

where 

F is the operand, usually dependent on XI, X2, X3 

LI, L2, L3 are the lower limits 

Ul, U2, U3 are the upper limits 

XI, X2, X3 are the running indices (bound primitives) 

Ul-Ll, U2-L2, U3-L3 are integers 2 0 

If such a product is to be evaluated using the VALUE operator, the 

limits must normally be explicit integers.  However, special cases such 

as £1 -  P., where n is a primitive, and ul -  n + 5 are also allowed. 

The operand F may not contain indexed arrays such as Fl(Xl,X2) at 

present. 

C•   Sum over a Double Index Set 

Let us use SYMAP2 to generate J       y (i + j) and 

then evaluate it. i=l  j=2 

The double summation can be specified in one step, once the 

summand has been built up. We assume that I and J have been previously 

specified as primitives. 

Fl = I**2 i2 

2 
F2 = Fl + J i + j 

2 
The summand i + j is thus called F2 here. 

F3 = SUM(1, 3, I, 2, 3, J,  F2) 

The double summation in the L-system requires seven parameters, namely 

two triplets for the two index sets and one summand. The first triplet 

1, 3, I specifies lower limit, upper limit, and name of index for the 
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last (outermost) summation.  The second triplet 2,3, J is similar for 

the next (here, innermost) summation. The summand is specified as the 

last parameter. At this point F3 is the indicated double sum in L- 

notation. 

Fk =  VALUE (F3) 

In this context VALUE causes the successive substitution of j = 2 and 
2     2 

then j = 3 in the summand and sums the results to obtain i +2 + i +3 
2 2 

or 2i +5-  It then uses 2i + 5 as the new summand (still symbolic, 

note) and successively substitutes i = 1, i = 2, i=3 and sums to get 

2(l)2+5 + 2(2)2+5 + 2(3)2+5 or 7 + 13 + 23 or 1+3. Thus the result Fk 

is the L-form equivalent to the number Kj. 

F5 = RECONV (Fk) 

This displays the readable result k3-     (See Figure 6.) 

Naturally, if the summand had contained other variables or functions 

the result would have been non-numeric.  Some simplification would take 

place but the result might not be in the "simplest" form for the user. 

Additional substitutions might then be applied through other 

manipulations, if desired. 

Triple sums and of course single sums can be specified in a 

similar way. 

The general single, double, and triple sums such as 

ul       u2   ul u3    u2    ul 

E,orSS' "   E ESf 
x

l=il x2=i2    xl=il x3=i3    x2=i2    xl=il 

are specified respectively by 

SUM (LI, Ul, XI, F) 

SUM (L2, U2, X2, LI, Ul, XI, F) 

SUM (L3, U3, X3, L2, U2, X2, LI, Ul, XI, F) 

with the same restrictions specified earlier for products over index 

sets.  In particular note that Ul-Ll, U2-L2, U3-L5 must be integers 

> 0. 
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Input: 

APER OX 

I 

J 

FCN 

> > 

Fl = I ** 2 

F2 = Fl + J 

F5 = SUM (1,5,1,  2,5,J,  F2) 

Fk = VALUE (F5) 

F5 = KECONV (Fl+) 

> , 

Principal Output: 

F5 

Figure 6.  Sum over a Double Index Set 

D.  Substitution in Manipulating Trigonometric Identities 

Given that 

sin (A + B) = sin A * cos B + sin B * cos A 

and that 

cos (A + B) = cos A * cos B - sin A * sin B 

let us derive formulas for sin 5A and for cos 5A in terms of sin A 

and cos A. 

Assuming that composite manipulations are available (otherwise 

taking a few more, but equivalent, steps) we can write: 

Fl = SIN (A) * COS (B) + SIN (B) * COS (A) 
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which is equivalent to sin (A + B), and similarly: 

F2 = COS (A) * COS (B) - SIN (A) * SIN (B) 

which is equivalent to cos (A + B).  We note that if B were set equal 

to A in Fl and F2, we would get the equivalent of sin (A + A) or sin 2A 

and of cos (A + A) or cos 2A.  Similarly for B = 2A we would get the 

equivalent of sin 3A and of cos 3A in terms of functions of A and 2A. 

Fll = SUBST (Fl, B, A) 

F12 = SUBST (F2, B, A) 

F13 = 2 * A 

Flk =  SIN (F13) 

F15 = COS (F13) 

We now have explicitly sin 2A at Fl^ and cos 2A at F15 as well as their 

equivalent expressions in terms of A at Fll and F12. 

F21 = SUBST (Fl, B, F13) 

F22 = SUBST (F2, B, F13) 

Now F21 is equivalent to sin 3A and F22 is equivalent to cos 3A, both 

in terms of A and 2A.  Let us remove the dependence on 2A by use of 

Fll through F15. 

F23 = SUBST (F21, Flk,  Fll) 

This eliminates sin 2A in the expression for sin 3A. 

F21+ = SUBST (F23, F15, F12) 

This eliminates cos 2A from the result of the preceding step. 

Similarly, 

F25 = SUBST (F22, FlU, Fll) 

F26 = SUBST (F25, F15, F12) 

Now the formula wanted for sin 3A is at F2U and that for cos 3A is at 

F26. These can be displayed with two more steps: 

F100 = RECONV (F2k) 

F200 = RECONV (F26) 

These results involve sin A and cos A to various powers.  If some other 
2 2 

combination is preferred, then replacing sin A by 1 - cos A or 
2 2 

cos A by 1 - sin A etc. in F2i+ and F26 (or perhaps in F12 before 

continuing as shown) might give the form wanted.  In general it is not 
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APPRCK 

A 

B 

FCN 

Fl       = SIN  (A)  * COS  (B)  + SIN (B) * COS  (A) 

F2       = COS  (A)  * COS  (B)   - SIN  (A)  * SIN  (B) 

Fll    = SUBST  (Fl,  B, A) 

F12    = SUBST  (F2,  B,  A) 

F13     = 2 * A 

¥lh    = SIN  (P13) 

F15     = COS   (F13) 

FlOO  = RECONV  (Fll) 

F200   = RECONV   (F12) 

F300  = RECONV  (FlU) 

FtoO  = RECONV  (F15) 

F21    = SUBST  (Fl,  B,  F13) 

F22    = SUBST  (F2,  B,  F13) 

F500  = RECONV   (F21) 

F600  = RECONV  (F22) 

F23    = SUBST  (F21,  Fl^,  Fll) 

F2i;    = SUBST  (F23,  F15,  F12) 

F700  = RECONV  (F2U) 

F25     = SUBST  (F22,  FlU,  Fll) 

F26     = SUBST   (F25,  F15,  F12) 

F800  = RECONV  (F26) 

Figure 7.       Input for Substitution Example 
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FlOO 

2*(SIN(A))*(C0S(A)) 

F200 

(-l)*((SIN(A))**2)+((COS(A))**2 

F300 

(SIN(2*A)) 

FUOO 

(C0S(2*A)) 

F500 

(SIN(A))*(C0S(2*A))+(SIN(2*A))*(COS(A)) 

F600 

(-1)*(SIN(A))*(SIN(2*A))+(COS(A))*(C0S(2*A)) 

FTOO 

3*(SIN(A))*((COS(A))**2)+(-l)*((SIN(A))**3) 

F8OO 

(-3)*((SIW(A))**2)*(C0S(A))+((COS(A))**3) 

Figure 8. Principal Output, Substitution Example 

obvious in advance just which substitutions of this kind are useful. 

Hence they can not be fully automatic. However, the user can try- 

several versions of his "program" one after the other, and select the 

form of result he prefers. 

Figures 7 and 8 show the input and output for an equivalent set of 

steps with a few additional results displayed. 

Substitution in SYMAP2 is by no means limited to trigonometric 

expressions. Indeed, primitives, powers, products, and sums can be 
2   k 

replaced in most contexts.  In particular, a product like a  . x 
2   3   h 

can be replaced in a context like log (3 • a . b . x . y) where the 

factors are not even adjacent. Many symbol manipulators do not have 

this capability. 
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E.   Indefinite and Definite Integration 

Let us find the indefinite integral with respect to y and then x 

of a sum of terms involving powers of y and x, namely: 

// 
h -12 

( 2 x y + x  y  sin (t) ) dy dx 

Then let us find the following definite integral as well: 

cos(y) dy dx r /; - 
The two SYMAP2 procedures are analogous.  In each case the integrand is 

set up, and then a single additional step is sufficient to specify a 

single, double, or even triple integral.  If the limits of integration 

are complicated, they probably should be formed separately for 

convenience. Finally the results can be displayed in readable form. 

F1=2*X**U*Y+X**-1*Y**2* SIN(T) integrand 1 

F2 = IINTEG (X, Y, Fl) integral 1 

F5 = RECONV (F2) display 1 

Note that the parameters of the IINTEG operator are, from right to 

left, the integrand, the first (or only) variable of integration, and 

any other variables of integration in order. A single constant of 

integration is generated automatically as each indefinite integration 

is completed.  If the integration can only be indicated, the constant 

of integration is omitted. 

The case of definite integration is similar, except that the 

limits must be specified. 

F10 = T ** 2 a limit 

Fll = A ** X * COS (Y) integrand 2 

F12 = DINTEG (A,H,X,F10,X,Y, Fll)  integral 2 

F13 = RECONV (F12) display 2 

Note that the parameters for DINTEG consist of a triplet for each level 

of integration plus the integrand at the right. Each triplet has the 

lower limit at the left, the upper limit second, and the variable of 

integration at the right.  In this example the first integration is 
o 

with variable y, lower limit F10 (or t ), and upper limit x.  The 

second integration is with variable x, lower limit a, and upper limit h. 
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e 

C 

C . x~ 

C1 • x C2 C2 ^ 

C1 . eX 

c2 + 
C, . sin (x) 

C, . cos (x) 

C • sinn (x) 

C • cosh (x) 

C . loge (x) 

 1 a = positive term 
2 

a + x 

1 a = positive term 

Also any linear combination of the above (e.g., polynomials in x). 

Note:  C,, C^,  a must not involve x, but need not be constants.  All 

other integrations are merely indicated at present.  This list may be 

extended for other particular cases. 

Figure 9- Integrands Allowing Complete Integration in x. 

F3 

X*CNST1 

+(l,5)*(X**5)*(Y**2) 

+(I,3)*(Y**3)*(LOGE(X))*(SIN(T)) 

+CNST2 

F15 

(A**(A))*((LCGE(A))**(-1))*(SIN(T**2)) 

+(-l)*(A**(H))*((L0GEE(A))**(-l))*(SIN(T»*2)) 

+DINTEG(A,H,X,((A**(X))*(SIN(X)))) 

Figure 10. Principal Output, Integration Examples 
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(in general the limits can be quite complex, but only a limited class 

of integrands can be integrated completely using SYMAP2; see Figure 9.) 

In this example after one definite integration the integrand 
x x      P 

becomes a sin (x) - a sin (t ), a sum of terms.  The first term 

cannot be integrated further by SYMAP2; so its second integration is 

merely indicated.  The second term can be handled however, and its 

second integration is carried out. The result is shown in Figure 10. 

As with most SYMAP2 operations the results, F2 and F12 here, can 

be used in further manipulations. 

F.  Symbolic Differentiation 

Let us find the derivative of the algebraic form 
•z 

/ x I  cos ty dt 
h 

a 

with respect to x and y and z separately. First we must generate this 

form unless we already have it from earlier steps: 

Fl = T * Y ty 

F2 = COS (Fl) cos ty 

F3 = DIMEG (H, Z, T, F2)        integral 

FU = X * F3 exponent 

F5 = A ** Fk differand 

We then differentiate the form F5 with respect to x in two steps: 

Fll = DERIV (X, F5) 

F12 = VALUE (Fll) 

Here Fll is the indicated derivative, not yet evaluated, and F12 is the 

result of evaluation, namely the L-form equivalent to 

•z f 
x I   cos ty dt 

(a ,/n ) (J h cos ty dt) (loge a). 

To display this in readable form we use a KECONV step: 

F20 = KECONV (F12) 

(See Figure 11 and 12.) 
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A 

X 

y 

z 
H 

T 

} ,' 

GFCN 

,',' 

Fl = T * Y 

F2 = COS (Fl ) 

F3 = DINTEG (H, Z, T, F2) 

FU = X * F3 

F5 = A ** FU 

F10 = RECONV (F5) 

Fll = DERIV (X, P5) 

F12 = VALUE (Fll) 

F20 = RECONV (F12) 

Figure 11.  Input for Differentiation Example 

F10 

A**(X*(DIWTEG-(H,Z,T,COS(Y*T)))) 

F20 

(A*»(X*(DMEEG(H,Z,T,COS(Y*T))))) 

*(LOGE(A) )*(DINrPEG(H,Z,T,COS(Y*T))) 

Figure 12. Principal Output, Differentiation Example 
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In like manner we can differentiate F5 with respect to y: 

F21 = DERIV (Y, P5) 

F22 = VALUE (F2l) 

F30 = RECONV (F22) 

Here we would get a FORTRAN-like expression readily interpreted as 

■z 

x|  cos ty dt 
■/; i (a J ) (x\h (- t sin ty) dt) (log^) 

The exact order of elements would depend heavily on the collating 

sequence used. 

Three similar steps would get the derivative with respect to z as 

rz 
x I  cos ty dt 
J h 

(a ) ( x cos zy) (log a). ^e 

Incidentally, the L-forms F12, F22, and the like can be differentiated 

further to obtain second- and higher-order derivatives if desired. Also 

numeric values can be substituted for some or all variables to obtain 

derivatives at specific points. 
7 

Many outside symbol manipulators such as ALTRAN are designed to 

process polynomials or rational expressions only. An example like this 

one involving trigonometric functions and integrals could thus not be 

done with such manipulators. 

G.      Differentiation of a Function Defined Implicitly 

Suppose that u is defined implicitly in terms of an independent 

variable x and two other variables v and w, which also depend on x, 

as follows: 
5   3  2 

log (x) + u^ + v . w =0 
2 

F(x,u,v,w)   = x    + u 

where, say: 

v = sin  (x) 

w = x + tan  (x) 

u = g  (x) 
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Let us find the derivative of u with respect to x, that is   g(x), 

in terms of x, u, v, and w. 

The SYMAP2 operator IMDIFF (implicit differentiation) is used to 

this end.  Several preliminary steps are required, however: 

Fl = X **2 + U * LOGE(X) + U **5 + V **3 * W **2 F 

F2 = G(X) u 

F3 = SIN (X) v 

Fk =  X + TAN (X) w 

F5 = IMDIFF (X, Fl, U, F2, V, F3, W, Fk) 

F6 = RECONV (F5) 

The parameters of IMDIFF are, from left to right: 

(1) The independent variable of differentiation, here x. 

(2) The formula defining the dependent variable implicitly, here F. 

(3) The dependent variable, here u. 

(k)    The general function (of x) representing the dependent variable, 

here g(x). 

(5) One of the intermediate variables, if any, here v. 

(6) The explicit definition of v in terms of x. 

(7) Another intermediate variable, if any, here w. 

(8) The explicit definition of w in terms of x. 

Of course X, U, V, and W must be primitives (so declared in 

part (2) of the SYMA.P2 input), and G must be a user specified function 

(as declared in part (3) of the input.) 

The result of IMDIFF, stored with label F5 and displayed via the 

RECONV operator, is not the desired derivative -=— g(x) but is the 

total derivative of the expression F, which is equivalent to 

(=0) 

since F is a function of x, u, v, and w in this example and u, v, and 

w are all functions of x. 

9F + OF 
dx  du 

. du   öF 
dx   dv 

dv   dF 
dx   dw 

dw 
dx 
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du dg(x) 
dx dx 

dv 
dx " 

= cos   (x) 

In this example 

r— = 2.x + u.x 
dx 

^=loge(x) +5.u 

dF  ,   2   2 
— = 3- v  . w 
dv 

dF  0 3 dw  . L i-   , v-,-2 
— = 2.v .w — = 1 + [cos(x)j 
dv dx v ' 

Thus F5 represents 

(2x + u . x"1) + (log  (x) + 5.u ) . dg(x) + 3.v2.w2. cos(x) 
e dx 

+ 2.v3.w. (1+ [cos (x) ]"2 )   (=0) 

which is a linear equation defining dg(x) implicitly.  It can be 
dx 

solved using the SOLVEQ operator as follows: 

FT = DERIV (X, F2) dg(x) 

F8 = SOLVEQ (F5, F7, l) 

F9 = RECONV (F8) 

The SOLVEQ parameter 1 indicates just one equation; so F5 and F7 serve 

as one-dimensional arrays without any need of the FSYST operator. 

F8 represents the solution (a single element) and can be displayed 

directly without prior use of the ELEM operator.  In this example the 

solution is the equivalent of 

(2.x + u.x  + g.v .w . cos(x) + 2.v .w + 2.v ,y . [cos(x)]  ) 

(log  (x) + 5 • uU) 
e 

fully expanded as five terms,   each containing the inverse of the 

denominator as a factor.  This is the derivative wanted. 

At present IMDIFF is limited to 0, 1, or at most 2 intermediate 

variables like v and w.  If w had been missing from F in the example 

above the last two IMDIFF parameters could have been omitted.  If no 

intermediate variable had been involved, the first four parameters 

would have been sufficient. 
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Note that if there were two or more independent variables, say 

x and y, the above procedure could be used to find either dg (x,y) 
or dg (x,y)  separately. The only changes needed would  y 

öx 
be to express u, v, and w in terms of both x and y instead of x alone 

and to specify either x or y, but not both, as the first parameter of 

IMDIFF and of DERIV. 

H.  Differentiation of Two Functions Defined Implicitly 

Suppose that u and v are defined implicitly in terms of an 

independent variable x by means of two equations, say: 

= 0 Fl 
(x,u,v)   = u  . V    + c •  logg  (x) 

F2 
(x,u,v)  = u  . sin(x) 2x - v  .  a 0 

Also let 

u = g1(x) 

v - g2(x) 

indicate the dependence of u,v on x. 

Let us use SYMAP2 to find du and dv , that is dgl^ and dg2^X^ . 
dx     dx dx        dx 

The operator IMDIFF cannot be used directly here, but another operator, 

PIMDIF, can. Because of the generality of PIMDIF several specifications 

and preliminary steps are needed: 

F1=U*V**2+C* LOGE (X) 

F2 = U * SIN (X) - V * A **  (2 * X) 

F3 = FSYST (Fl, F2) 

This forms the system of equations defining the u and v implicitly. 

(in principle there could be several equations in several variables.) 

Fk =  Gl (X) u = g1 (x) 

F5 = G2 (X) v = g2 (x) 

F6 = SEQ (Fk,  F5) sequence 

These steps form an ordered sequence (technically different from a 

system in SYMAP2) of the functions showing a general dependence of u 

and v on x (or on several independent variables if that is appropriate). 
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FT = SEQ (X) independent 

F8 = SEQ (U, V) dependent 

These two steps form ordered sequences of the independent variable(s) 

and of the dependent variables respectively. Finally, 

F9 = PIMDIF (l, 2, FT, F3, F8, F6) 

There are always six parameters for PIMDIF, specified in this order: 

(1) the number of independent variables 

(2) the number of equations (and dependent variables) 

(3) the sequence of independent variables (primitives) 

(k)    the system of equations 

(5) the sequence of dependent variables (primitives) 

(6) the sequence of dependency functions 

Note that FT here is the sequence containing x, not the primitive x 

itself. 

The result F9 is a system of linear equations, here two equations 

in dg (x) and dg (x), which can be solved with SOLVEQ as follows: 

dx dx 

Fll = DERIV (X, Fk) unknown 1 

F12 = DERIV (X, F5) unknown 2 

F13 = FSYST (Fll, F12)      unknowns 

FlU = SOLVEQ (F9, F13, 2)    solutions 

F15 = ELEM (Fill, 1) solution 1 

Fl6 = ELEM (F11+, 2) solution 2 

Thus F15 is the derivative dg,(x) and Fl6 is dg„(x), both expressed 

dx dx 

in terms of x, u, v.  If desired they can be displayed using RECONV in 

the usual way. 

If there had been two independent variables x and y and the 

sequences, functions, and numerical parameters of PIMDIF had been 

adjusted to show this, then the system F9 would have been two pairs of 

equations, with equations 1 and 2 in dg,(x,y) and dg (x,y) and equations 

5x~        dx 

3 and k  in dg (x,y) and dg (x,y) . A set of four equations in four 

"dy *Sy 
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unknowns is too large for SOLVEQ as implemented on ERLESC 2 at present; 

so two separate systems would have to be formed out of F9 using ELEM and 

FSYST. This could be done, however, with only a few extra SYMAP2 steps, 

and the two systems solved separately. Given a larger core memory on 

ERLESC 2, larger systems could be handled directly. 

I.  Change of Variables 

Given a pair, say, of differential equations of the first order 

x + y . M^LL =0 J       dx 

sin (x) + Mziil = o 
ay 

let us change independent variables from (x,y) to (w,z) where 

x = w + z 

y = w . z 

The SYMAP2 operator CHGVAR was developed for this purpose.  Several 

preliminary steps and specifications are required: 

Fl = G(X,Y) 

F2 = X + Y * DERIV (X, Fl) 

F3 = SIN (X) + DERIV (Y, Fl) 

FU = FSYST (F2, P5) 

This forms the system of differential equations to be transformed. 

F5 = SEQ (X,Y) 

F6 = SEQ (W,Z) 

These form two ordered sequences of the old variables and of the new 

variables, respectively. 

F7 = W + Z x(w,z) 

F8 = W * Z y(w,z) 

F9 = FSYST (FT, F8) 

These state the relations of the old variables in terms of the new, and 

form a system of them (in the same order as for the sequence, namely 

first x and then y). 

Fll = Hl(X,Y) w(x,y) 

F12 = H2(X,Y) z(x,y) 

P13 = FSYST (Fll, F12) 
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These state the general dependence of the new variables in terms of the 

old (using functions declared in part (5) of the input), and form a 

system (in the order w, then z). 

Finally, 

FlU = CHGVAR (2,2,2, FU, F5, F6, F9, F13) 

There are always precisely eight parameters for CHGVAR, namely, 

from left to right: 

(1) the number of equations     q 

(2) the number of old variables  o 

(5) the number of new variables  n ^ o 

(U) the system of equations 

(5) the sequence of old variables 

(6) the sequence of new variables 

(7) the system, old in terms of new 

(8) the system, new as functions of old 

The result of CHGVAR, here called FlU, is a system of equations 

equivalent to the original but in terms of the new variables, namely 

the results wanted. They can be isolated using ELEM of course: 

F15 = ELEM (FlU, l) 

F16 = ELEM (FlU, 2) 

Finally they can be displayed if desired: 

F17 = RECONV (F15) 

Fl8 = RECONV (F16) 

The new equations (see Figure 13) are equivalent to 

(w-z)    . W . Z   . ^ - (w-z)    . W.Z   . rr*-   +   W.Z. ^ + W + Z = 0 
äw dz       aw 

-(w-z)"1 . |£ + (w-z)"1 . |S + sin (w + z) = 0 
dw  v        dz      v     ' 

and 

Incidentally, the operator CHGVAR automatically makes repeated 

use of LMDIFF and PLMDIF, while PIMDIF also uses IMDIFF. This 

particular example was run on BRLESC 2 and required approximately 0.2 

minute, including several displays. The time required depends on the 

particular relations, number of variables, number of derivatives present, 

etc. 

UU 



Equations in (x,y) as displayed 

Y*(DERIV(X,G(X,Y)))+ X 
(DERIV(Y,G(X,Y)))+(SIN(X)) 

Equations in (w,z) where x=w + z, y=w. z 

((W+(-l)^)^(-l))*W*Z**2*(DERIV(W,G(W,Z))) 

+(-l)*((W+(-l)*Z)**(-l))*W»Z**2*(DERIV(Z,G(W,Z))) 

+W*Z*(DERIV(W,G(W,Z))) 

■W 

+z 

(-l)*((W+(-l)*Z)**(-l))*(DERIV(W,G(W,Z))) 

+((W+(-l)«Z)**(-l))*(DERIV(Z,G(W,Z))) 

+(SIN(W+Z)) 

Figure 13.  Change of Variables Example 

At present there are severe limitations on size in various parts 

of SYMA.P2. For CHGVAR at most two old variables, at most two new 

variables, and at most three derivatives of first order can be handled. 

Some of these restrictions can be relaxed on special request. 

J.  Taylor's Series in Two Variables 

For a more extensive application of SYMA.P2 let us study in some 

detail hpw to expand a function of two variables in a Taylor's series 

about a point (a,b). The same technique would apply to any function 

f(x,y) but for definiteness let us consider f(x,y) = sin (x + y) and 

choose (a,b) = (0,0). For some other function f or some other point 

(a,b) only the first few manipulations, which specify these, need be 

changed; so the "program" is reusable in many Taylor's series contexts. 

f(x,y) = f(a,b) + (h |j +k ^)f(x,y) 
(a,b) 

+ V (h f- + k |-)
n f(x,y)        + ^ ni  ox   V      (a^b) 
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Here h = x - a and k = y - b and the remainder Pin will be ignored. 

Thus repeated derivatives with respect to x and to y and mixed partials 
3 

like d f    will be needed. Further, the substitution of a for x 

dx by 

and b for y must be done repeatedly.  In general the higher derivatives 

of functions are much more complex than the functions themselves; so the 

character strings tend to get longer and some rather small finite n will 

have to be set to avoid overflow of memory blocs (whose size is 

preassigned via FORTRAN DIMENSION statements). This problem is less 

serious for sin (x + y) than for most functions. 

We will make use of the control manipulations introduced earlier 

which allow counters and loops.  (Without these many similar steps 

would be needed for the higher level terms, and additional steps would 

have to be added if n were increased.) 

The flow diagram shown in Figure Ik  will be used to clarify the 

SYMAP2 steps as they are introduced. Because of the looping involved, 

some strings need to be initialized prior to entering the loops, and 

some strings used repeatedly need to be formed early and saved for reuse. 

Some copying is needed also. 

The i - th order terms in the Taylor series are given by: 

A < * k+ k IF-)1 f(x'y) 

*icr 
(a,b) 

J  i 
k   Of 

j=o        öx  äy (a',b) 

In the flow diagram boxes numbered 11 through 18 handle the variation 

of j from 1 through i and box 19 handles J = 0, the term involving 

—7— '  Box 29 provides the variation of i up through n, looping back 
dx1 

to box 10. As with any program, other sequences of operations could 

have been used to the same end. 

Box 1 specifies the f(x,y) and the point (a,b), here (0,0), as 

well as the desired level of expansion n, say 3- We assume that 
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(L=0) 

(i=0) 
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-F104 

-F105 
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-F107 
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-13 

12- 

d  F; 

dy 
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\     dxi-idyij 

(a,b) 

(IV l-JkJ 

dy fcb) 

21 + j 

F35 

19 

f~   F1 
ox 

-ä-Fll 
**       l(a.b) 
hi .4-n 

" (-S1 

2 + F35-^2 
fob) 

F21 

F35 

F109 

Fiuj~^Fn-j      (i= 1,2, ..., L) 

Figure Ik.    Flow Diagram, Taylor's Series Example. 



primitives x, y, and t have been declared. The first SYMAP2 steps are: 

F101 = X + Y (x+y) 

Fl  = SIN (F101) f 

These two basic manipulations specify f (x,y).  (A single composite 

manipulation could have been used, if permitted.) If desired Fl can 

be displayed in readable form: 

F100 = KECONV (Fl) 

The point (a,b) = (0,0) is specified easily: 

F101 =0 a 

F102 =0 b 

The level n is to be a small positive integer, say 3, in index Ik. 

One step provides this: 

INDEX Ik  = 3 

This completes the variable part of the program. What follows could 

be the same for any reasonable f, any (a,b), and sufficiently small n. 

Box 2 forms h = x - a and k = y - b, since various powers of these 

are needed and can be built up by repeated multiplication or by 

substitution in certain expressions involving them. The combination 
2 

h + kt raised to various powers can provide the binomial coefficients 

and related products such as h  k when needed in the loops. Thus we 

provide these SYMAP2 steps: 

F103 = X - F101 x - a = h 

FIOH- = Y - F102 y - b = k 

F105 = FlOil * T kt 

F105 = F105 * T kt2 

F105 = F105 + F103 h + kt2 

(The label F105 is reused here merely because the intermediate results 

are not needed further and there is a finite limit on the number of 

labels permitted.)* 

The next few steps, as shown in box 2 of the flow diagram, set 

initial values prior to the iterative multiplications of box 10, which 

*See SzcZion VI 
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is within a loop with i varying. 

F106 =1 h1    ( i = 0 ) 

F107 =1 (h + kt2)1 ( i = 0 ) 

F108 =1 i»    ( i = 0 ) 

Similarly the initial term of the sum which is the Taylor's series 

sought is f(a,b). This can be obtained from f(x,y) at Fl by successively 

substituting a for x and b for y: 

F20 = SUBST (Fl, X, FlOl) 

F109= SUBST (F20, Y, F102)   f(a,b) = E (i=0) 

This completes the initializations except for setting the index i to 

unity. This index i, kept at 13, refers to the current order of 

derivatives and will vary from 1 (since i = 0 has been taken care of) 

to n. 

INDEX 13 = 1 

We now consider the major loop shown in boxes 10 through 29, with 

i held fixed until near the end. The first step of box 10 must be a 

numbered manipulation since a jump is made to it from box 29. Let us 

use the number 10 and let box numbers and manipulation numbers agree, 

merely for convenience.  (The first manipulations in boxes 1 and 2 and 

certain other boxes do not actually require numbers since there are no 

actual jumps to them. They are shown only for ease of reference.) 

INDEX II = 1 10     numbered step 

The above step sets index j, kept at II, to unity. This index will 

vary from 1 through i for fixed i, and the case of j = 0 will be 

handled separately in box 19- Certain strings independent of j are 

best formed prior to entering the loops and hence are considered here: 

F106 = F103 * F106 h1 

F107 = F105 * F107 (h + kt2)1 

INDEX F10 =13 i 

F108 = F10 * F108 ii 

Note that F108 is an L-constant representing i'., as needed in all terms 

of level i. It is formed by multiplying the L-constant for i (at FIO) 

by the previous F108, which was (i-l)l F107 is the expanded form of 
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(h + kt ) for the current i. F106 would also "be a polynomial if a 

were not 0, but in this example is a simple power h1 = (x - a) 

= (x - 0)  = x . Box 10 is now completed and the index j has been set 

to 1. 

Since there is a jump to box 11 from box 18, the first step of box 

11 must be a numbered one: 

INDEX F10 = II 11       numbered step 

F10 = T ** F10 t^ 

F10 = F10 * F10 t2^ 

F51 = SUBST (F107, F10, 0) 

F32 = F107 - F31 

F33 = SUBST(F32, T, l) 

F3U = F33 / F108 

The above set of steps generate the needed "coefficient" of 

d f  , namely I . J h Jk / i'. .  Other steps could have been 

ox  oy 

used, but this set accomplishes the goal as follows. F107 is (h + kt ) 

expanded, equivalent to X y[    1 h  K t  .  It contains terms in 

"£(■)" 
2  h 2i t , t , . . . , t  and terms not involving t (m=0). We want to 

21 isolate the terms in t , that is those terms for which m = j, and thus 

obtain KJ h1-JkJt J.     By generating t J at F10, using the first 3 

steps of box 11 as shown above, and then replacing this power (only) by 

0 in F107, we obtain at F31 all the terms of F107 except the ones 

wanted.  Then subtracting F31 from F107 gives at F32 exactly the terms 

wanted. Replacing t (and indeed all powers of t) by 1 in F32 then 

gives at F33 the expression ( .) h Jk .  (if a or b is not zero, this 

is a polynomial in x, y, a, bj otherwise one term.) Finally since F108 

contains i'. (see box 10), division of F33 by F108 gives at F3^ the 

"coefficient" wanted. 

We next evaluate the appropriate derivative 
dx1-JdyJ 

for the current fixed i and fixed j.  One way to do this is to use 
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slightly different notation and a separate set of steps for each j. 

Let us introduce box 12 for j=l, box 13 for j=2, etc., as shown on the 

expanded flow diagram detail of Figure 15. 

Applying this approach we continue box 11 with a series of 

decisions on j, up to the allowed maximum that n can have: 

INDEX 12 = II - Ik 

INDEX 12 = 12 - 1 

IF (12, 19) j > n ? 

INDEX 12 = 1 - II 

IF (12, 12) j = 1 ? 

INDEX 12 = 2 - II 

IF (12, 13) j = 2 ? 

INDEX 12 = 3 - II 

IF (12, Ik) J = 3 ? 

GO TO 19 

A numbered step starts box 12: 

F10 = DERIV (Y, Fl) 

F12 = VALUE (F10) 

F20 = SUBST (F12, X, FlOl) 

F22 = SUBST (F20, Y, F102) 

F35 = F22 * F3^ 

GO TO 18 

Similarly for box 13: 

F10 = DERIV (Y, F2) 

F13 = VALUE (F10) 

F20 = SUBST (F13, X, FlOl) 

F23 = SUBST (F20, Y, F102) 

F35 = F23 * F3U 

GO TO 18 
51 

(j > max n) 

12  numbered step 

<£- Fl = ^f 
ay 

ox " dy 

at (a,b) 

times coefficient 

13  numbered step 

  F2 _ !l  
dy  F   . i-2. 2 

öx  öy 

at (a, b) 

times coefficient 



NO 

'y 

-f-F2|,   ,, —-F22 dy      |(o,b) 
F23 «F34  »-F35 

YES 

^   NO 

Figure 15.    Detail of Boxes 11 through 18, Taylor's Series 
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Analogous steps apply for box 1^, etc, for each allowed j. Each 

of these boxes leads to box 18: 

INDEX II = II + 1 18  numbered step 

F109 = F35 + F109 enlarged E 

INDEX 12 = 13 - II 

IF (12, 11) J £ i ? 

The above set of steps increases j, accumulates terms into the series, 

and if j £ i loops back to box 11 to continue with the new j. Other- 

wise box 19 is done next: 

F10 = DERIV (X, Fl) 19  numbered step 

Fl = VALUE (F10) a _n   d
Xf 

dx     -. i 
F20 = SUBST (Fl, X, FlOl) 

F21 = SUBST (F20, Y, F102)        at (a, b) 

Note that in this case the derivative is taken with respect to x, not y 

as in boxes 12, 13, etc. Also a different "coefficient", namely h /i'., 

is needed: 

F5U - F106 / F108 hX/i: 

F35 = F3U * F21 new "term" 

F109 = F35 + F109 enlarged E 

This completes the accumulation of terms at level i, but some 

adjustment is needed before the next i can be handled. The i-th 

level derivatives are not at Fl, F2, F3, etc.  as needed in box 12, 13 

ll+, etc. but rather at Fl, F12, F13, etc. Fl is correct because box 

19 was done last at level i and the previous Fl was no longer needed. 

F12 was used in box 12 because the old F2 was still needed for box 13, and 

similarly for the others. Hence, these must now be copied into place, 

say with a loop on j = 2,3, • • - , i as follows: 

INDEX II = 2 j = 2 

INDEX 12 = 2 - II 21  numbered step 

IF (12, 22) j = 2 ? 

INDEX 12 = 5 - II 

IF (12, 23) j = 3 1 
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INDEX 12 = k  - II 

IF (12, 24) j = k  ? 

GO TO 29 

F2 = F12 22 

GO TO 28 

F3 = F13 23 

GO TO 28 

Fk  = FlU 24 

GO TO 28 

INDEX II = II + 1 28  j + 1 - j 

INDEX 12 = 13 - II 

IF (12, 21) J * I ? 

(Doing the above by a loop is not strictly necessary here, but in 

another context this technique might be very useful.) 

We are now ready to advance the index i and loop back to box 10 if 

required: 

INDEX 13 = 13 + 1 29  i + 1 - i 

INDEX 12 = Ik  -  13 

IF (12, 10) i 5 n ? 

If 12 is negative, we have the entire Taylor's series at F109 and can 

display it in readable form: 

F200 = RECONV (FIO9) 

The original expression for f(x,y) was destroyed because we reused 

label Fl at each level i.  If we had wanted to save it, we could have 

copied it from Fl to another location in box 1. 

The original and final displays are shown in Figure 16. 

The above set of expository examples has demonstrated some, 

but by no means all, of the capability of SYMAP2. The reader is urged 

to consider ways it can be of use to him. 
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FlOO 

(SIN(X+Y)) 

F200 

X 

+(l,2)*X*(Y**2) 

+(l,2)*(X**2)*Y 

+(1,6)*(X*»5) 

+Y 

+(1,6)*(Y*»3) 

Figure 16. Principal Output, Taylor's Series Example 

VI.  PRESENT STATUS OF SYMAP2 AND FUTURE PLANS 

The algebraic symbol manipulator SYMAP2 is still experimental 

though operational and is continuously being modified.  It has been 

used for a variety of small applications and a few large ones within 

BRL, however; and additional applications are welcome.  Local and 

other potential users are encouraged to contact the author. 

On the BRLESC 2 computer 80000 words of core memory are required 

at present for efficient processing of 300-character strings, and longer 

symbol strings require more storage than this.  Some temporary use of 

disc storage as well as 96OOO words of core permits symbol strings up 

to 700 characters in length at a cost of greatly increased running 

time for disc accesses and exchanges. A much larger core or virtual 

memory for BRLESC 2 or its successor is needed for larger problems 

requiring strings of 1000 to 2000 characters. 

Restrictions on user "programs" of manipulations include the 

following at present (96OOO word core memory): 

(1) Not more than U0 primitives specified. 

(2) Not more than 30 special user functions specified. 

(3) Not more than 200 distinct names of results Fi (but names 

can be reused if desired). 

(h)    Not more than 700 characters in any string, including 

expanded unsimplified intermediate results. 
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(5) Not more than 11000 characters total in all results saved. 

(6) Not more than 9 distinct indexes In used in arrays (but these 

indexes can "be used repeatedly). 

(7) Not more than 20 distinct counters In (reusable). 

(8) Not more than 70 characters per manipulation specification. 

(9) Not more than 200 basic manipulations per program (steps 

within loops being counted only once). 

(10) Not more than 3 simple linear equations in a system to be 

solved. 

A variety of error prints normally inform the user when such 

restrictions are not adhered to. However, some of these restrictions 

can be relaxed somewhat, at the expense of others, by special arrange- 

ment.  Most can be relaxed if additional memory becomes available. 

Future extensions of SYMAP2 will probably be in these directions: 

(1) Additional standard functions if needed. 

(2) Simpler user commands to replace frequently needed 

combinations of present basic manipulations. 

(3) More options to permit greater user control. 

(k)    Improved techniques for reuse of storage if released. 

(5) An on-line version for use in remote-access or time-sharing 

environments if sufficient storage becomes available. 

(6) More "natural" displays, with raised exponents, for example. 

(7) Fewer restrictions on labels, to allow applications oriented 

names. 

(8) Alternative versions of SYMAP2 to respond to special needs. 
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